MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Saint Petersburg Mathematical Olympiad
2022 Saint Petersburg Mathematical Olympiad
1
1
Part of
2022 Saint Petersburg Mathematical Olympiad
Problems
(1)
a+k divides b+k for all k<b implies a-k|b-k for all k<b
Source: St Petersburg 2022 9.1
9/28/2022
The positive integers
a
a
a
and
b
b
b
are such that
a
+
k
a+k
a
+
k
is divisible by
b
+
k
b+k
b
+
k
for all positive integers numbers
k
<
b
k<b
k
<
b
. Prove that
a
−
k
a-k
a
−
k
is divisible by
b
−
k
b-k
b
−
k
for all positive integers
k
<
b
k<b
k
<
b
.
number theory