MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Soros Olympiad in Mathematics
VII Soros Olympiad 2000 - 01
10.2
10.2
Part of
VII Soros Olympiad 2000 - 01
Problems
(1)
cos of a,b,(a+b) rational if sines rational (VII Soros Olympiad 2000-01 R1 10.2)
Source:
7/28/2021
Let
a
a
a
and
b
b
b
be acute corners. Prove that if
sin
a
\sin a
sin
a
,
sin
b
\sin b
sin
b
, and
sin
(
a
+
b
)
\sin (a + b)
sin
(
a
+
b
)
are rational numbers, then
cos
a
\cos a
cos
a
,
cos
b
\cos b
cos
b
, and
cos
(
a
+
b
)
\cos (a + b)
cos
(
a
+
b
)
are also rational numbers.
trigonometry
algebra
rational