MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia National Math Olympiad
2019 Serbia National Math Olympiad
2
2
Part of
2019 Serbia National Math Olympiad
Problems
(1)
2019 Serbia MO Day 1 P2
Source: 2019 Serbia MO
4/7/2019
For the sequence of real numbers
a
1
,
a
2
,
…
,
a
k
a_1,a_2,\dots ,a_k
a
1
,
a
2
,
…
,
a
k
we say it is invested on the interval
[
b
,
c
]
[b,c]
[
b
,
c
]
if there exists numbers
x
0
,
x
1
,
…
,
x
k
x_0,x_1,\dots ,x_k
x
0
,
x
1
,
…
,
x
k
in the interval
[
b
,
c
]
[b,c]
[
b
,
c
]
such that
∣
x
i
−
x
i
−
1
∣
=
a
i
|x_i-x_{i-1}|=a_i
∣
x
i
−
x
i
−
1
∣
=
a
i
for
i
=
1
,
2
,
3
,
…
k
i=1,2,3,\dots k
i
=
1
,
2
,
3
,
…
k
. A sequence is normed if all its members are not greater than
1
1
1
. For a given natural
n
n
n
, prove :a)Every normed sequence of length
2
n
+
1
2n+1
2
n
+
1
is invested in the interval
[
0
,
2
−
1
2
n
]
\left[ 0, 2-\frac{1}{2^n} \right ]
[
0
,
2
−
2
n
1
]
. b) there exists normed sequence of length
4
n
+
3
4n+3
4
n
+
3
wich is not invested on
[
0
,
2
−
1
2
n
]
\left[ 0, 2-\frac{1}{2^n} \right ]
[
0
,
2
−
2
n
1
]
.
algebra
polynomial