MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia National Math Olympiad
2022 Serbia National Math Olympiad
P2
P2
Part of
2022 Serbia National Math Olympiad
Problems
(1)
Inequality
Source: Serbian national olympiad 2022
4/1/2022
Let
a
a
a
,
b
b
b
and
c
c
c
be positive real numbers and
a
3
+
b
3
+
c
3
=
3
a^3+b^3+c^3=3
a
3
+
b
3
+
c
3
=
3
. Prove
1
3
−
2
a
+
1
3
−
2
b
+
1
3
−
2
c
≥
3
\frac{1}{3-2a}+\frac{1}{3-2b}+\frac{1}{3-2c}\geq 3
3
−
2
a
1
+
3
−
2
b
1
+
3
−
2
c
1
≥
3
inequalities
Serbian competition