MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia National Math Olympiad
2023 Serbia National Math Olympiad
3
3
Part of
2023 Serbia National Math Olympiad
Problems
(1)
Inequality on a periodic sequence
Source: Serbia MO 2023 P3
4/2/2023
Given are positive integers
m
,
n
m, n
m
,
n
and a sequence
a
1
,
a
2
,
…
,
a_1, a_2, \ldots,
a
1
,
a
2
,
…
,
such that
a
i
=
a
i
−
n
a_i=a_{i-n}
a
i
=
a
i
−
n
for all
i
>
n
i>n
i
>
n
. For all
1
≤
j
≤
n
1 \leq j \leq n
1
≤
j
≤
n
, let
l
j
l_j
l
j
be the smallest positive integer such that
m
∣
a
j
+
a
j
+
1
+
…
+
a
j
+
l
j
−
1
m \mid a_j+a_{j+1}+\ldots+a_{j+l_j-1}
m
∣
a
j
+
a
j
+
1
+
…
+
a
j
+
l
j
−
1
. Prove that
l
1
+
l
2
+
…
+
l
n
≤
m
n
l_1+l_2+\ldots+l_n \leq mn
l
1
+
l
2
+
…
+
l
n
≤
mn
.
number theory