MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia National Math Olympiad
2024 Serbia National Math Olympiad
1
1
Part of
2024 Serbia National Math Olympiad
Problems
(1)
Differences of divisors form geometric progression
Source: Serbia 2024 MO Problem 1
4/4/2024
Find all positive integers
n
n
n
, such that if their divisors are
1
=
d
1
<
d
2
<
…
<
d
k
=
n
1=d_1<d_2<\ldots<d_k=n
1
=
d
1
<
d
2
<
…
<
d
k
=
n
for
k
≥
4
k \geq 4
k
≥
4
, then the numbers
d
2
−
d
1
,
d
3
−
d
2
,
…
,
d
k
−
d
k
−
1
d_2-d_1, d_3-d_2, \ldots, d_k-d_{k-1}
d
2
−
d
1
,
d
3
−
d
2
,
…
,
d
k
−
d
k
−
1
form a geometric progression in some order.
geometric sequence
number theory