MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia Team Selection Test
2013 Serbia Additional Team Selection Test
3
3
Part of
2013 Serbia Additional Team Selection Test
Problems
(1)
Serbia additional TST 2013
Source:
5/22/2015
Let
p
>
3
p > 3
p
>
3
be a given prime number. For a set
S
⊆
Z
S \subseteq \mathbb{Z}
S
⊆
Z
and
a
∈
N
a \in \mathbb{N}
a
∈
N
, define
S
a
=
{
x
∈
{
0
,
1
,
2
,
.
.
.
,
p
−
1
}
S_a = \{ x \in \{ 0,1, 2,...,p-1 \}
S
a
=
{
x
∈
{
0
,
1
,
2
,
...
,
p
−
1
}
|
(
∃
s
∈
S
)
x
≡
p
a
⋅
s
}
(\exists_s \in S) x \equiv_p a \cdot s \}
(
∃
s
∈
S
)
x
≡
p
a
⋅
s
}
.
(
a
)
(a)
(
a
)
How many sets
S
⊆
{
1
,
2
,
.
.
.
,
p
−
1
}
S \subseteq \{ 1, 2,...,p-1 \}
S
⊆
{
1
,
2
,
...
,
p
−
1
}
are there for which the sequence
S
1
,
S
2
,
.
.
.
,
S
p
−
1
S_1 , S_2 , ..., S_{p-1}
S
1
,
S
2
,
...
,
S
p
−
1
contains exactly two distinct terms?
(
b
)
(b)
(
b
)
Determine all numbers
k
∈
N
k \in \mathbb{N}
k
∈
N
for which there is a set
S
⊆
{
1
,
2
,
.
.
.
,
p
−
1
}
S \subseteq \{ 1, 2,...,p-1 \}
S
⊆
{
1
,
2
,
...
,
p
−
1
}
such that the sequence
S
1
,
S
2
,
.
.
.
,
S
p
−
1
S_1 , S_2 , ..., S_{p-1}
S
1
,
S
2
,
...
,
S
p
−
1
contains exactly
k
k
k
distinct terms.Proposed by Milan Basic and Milos Milosavljevic
Subsets
TST
algebra