MathDB
Problems
Contests
National and Regional Contests
South Africa Contests
South Africa National Olympiad
2001 South africa National Olympiad
6
6
Part of
2001 South africa National Olympiad
Problems
(1)
System with unique solution
Source: South Africa 2001
10/1/2005
The unknown real numbers
x
1
,
x
2
,
…
,
x
n
x_1,x_2,\dots,x_n
x
1
,
x
2
,
…
,
x
n
satisfy
x
1
<
x
2
<
⋯
<
x
n
,
x_1 < x_2 < \cdots < x_n,
x
1
<
x
2
<
⋯
<
x
n
,
where
n
≥
3
n \geq 3
n
≥
3
. The numbers
s
s
s
,
t
t
t
and
d
1
,
d
2
,
…
,
d
n
−
2
d_1,d_2,\dots,d_{n - 2}
d
1
,
d
2
,
…
,
d
n
−
2
are given, such that
s
=
∑
i
=
1
n
x
i
,
t
=
∑
i
=
1
n
x
i
2
,
d
i
=
x
i
+
2
−
x
i
,
i
=
1
,
2
,
…
,
n
−
2.
\begin{aligned} s & = \sum\limits_{i = 1}^nx_i, \\ t & = \sum\limits_{i = 1}^nx_i^2,\\ d_i & = x_{i + 2} - x_i,\ \ i = 1,2,\dots,n - 2. \end{aligned}
s
t
d
i
=
i
=
1
∑
n
x
i
,
=
i
=
1
∑
n
x
i
2
,
=
x
i
+
2
−
x
i
,
i
=
1
,
2
,
…
,
n
−
2.
For which
n
n
n
is this information always sufficient to determine
x
1
,
x
2
,
…
,
x
n
x_1,x_2,\dots,x_n
x
1
,
x
2
,
…
,
x
n
uniquely?
algebra unsolved
algebra