MathDB
Problems
Contests
National and Regional Contests
South Africa Contests
South Africa National Olympiad
2005 South africa National Olympiad
5
5
Part of
2005 South africa National Olympiad
Problems
(1)
There exists a k satisfying this inequality
Source: South African MO 2005 Q5
5/27/2012
Let
x
1
,
x
2
,
…
,
x
n
x_1,x_2,\dots,x_n
x
1
,
x
2
,
…
,
x
n
be positive numbers with product equal to 1. Prove that there exists a
k
∈
{
1
,
2
,
…
,
n
}
k\in\{1,2,\dots,n\}
k
∈
{
1
,
2
,
…
,
n
}
such that
x
k
k
+
x
1
+
x
2
+
⋯
+
x
k
≥
1
−
1
2
n
.
\frac{x_k}{k+x_1+x_2+\cdots+x_k}\ge 1-\frac{1}{\sqrt[n]{2}}.
k
+
x
1
+
x
2
+
⋯
+
x
k
x
k
≥
1
−
n
2
1
.
inequalities
induction
inequalities unsolved
n-variable inequality