MathDB
Problems
Contests
National and Regional Contests
Sweden Contests
Swedish Mathematical Competition
1979 Swedish Mathematical Competition
1
1
Part of
1979 Swedish Mathematical Competition
Problems
(1)
nxn system x_1 + 2 x_2 + 3 x_3 + \cdots + (n-1) x_{n-1} + n x_n = n
Source: 1979 Swedish Mathematical Competition p1
3/26/2021
Solve the equations:
{
x
1
+
2
x
2
+
3
x
3
+
⋯
+
(
n
−
1
)
x
n
−
1
+
n
x
n
=
n
2
x
1
+
3
x
2
+
4
x
3
+
⋯
+
n
x
n
−
1
+
x
n
=
n
−
1
3
x
1
+
4
x
2
+
5
x
3
+
⋯
+
x
n
−
1
+
2
x
n
=
n
−
2
⋯
⋯
⋯
⋯
⋅
⋯
⋯
⋯
⋯
⋅
⋯
⋯
⋯
⋯
⋅
(
n
−
1
)
x
1
+
n
x
2
+
x
3
+
⋯
+
(
n
−
3
)
x
n
−
1
+
(
n
−
2
)
x
n
=
2
n
x
1
+
x
2
+
2
x
3
+
⋯
+
(
n
−
2
)
x
n
−
1
+
(
n
−
1
)
x
n
=
1
\left\{ \begin{array}{l} x_1 + 2 x_2 + 3 x_3 + \cdots + (n-1) x_{n-1} + n x_n = n \\ 2 x_1 + 3 x_2 + 4 x_3 + \cdots + n x_{n-1} + x_n = n-1 \\ 3 x_1 + 4 x_2 + 5 x_3 + \cdots + x_{n-1} + 2 x_n = n-2 \\ \cdots \cdots \cdots \cdots\cdot\cdots \cdots \cdots \cdots\cdot\cdots \cdots \cdots \cdots\cdot \\ (n-1) x_1 + n x_2 + x_3 + \cdots + (n-3) x_{n-1} + (n-2) x_n = 2 \\ n x_1 + x_2 + 2 x_3 + \cdots + (n-2) x_{n-1} + (n-1) x_n = 1 \end{array} \right.
⎩
⎨
⎧
x
1
+
2
x
2
+
3
x
3
+
⋯
+
(
n
−
1
)
x
n
−
1
+
n
x
n
=
n
2
x
1
+
3
x
2
+
4
x
3
+
⋯
+
n
x
n
−
1
+
x
n
=
n
−
1
3
x
1
+
4
x
2
+
5
x
3
+
⋯
+
x
n
−
1
+
2
x
n
=
n
−
2
⋯⋯⋯⋯
⋅
⋯⋯⋯⋯
⋅
⋯⋯⋯⋯
⋅
(
n
−
1
)
x
1
+
n
x
2
+
x
3
+
⋯
+
(
n
−
3
)
x
n
−
1
+
(
n
−
2
)
x
n
=
2
n
x
1
+
x
2
+
2
x
3
+
⋯
+
(
n
−
2
)
x
n
−
1
+
(
n
−
1
)
x
n
=
1
algebra
system of equations
System