MathDB
Problems
Contests
National and Regional Contests
Switzerland Contests
Switzerland - Final Round
2006 Switzerland - Final Round
9
9
Part of
2006 Switzerland - Final Round
Problems
(1)
(a^2 + b^2 + 1)(c^2 + d^2 + 1) >= 2(a + c)(b + d)
Source: Switzerland - 2006 Swiss MO Final Round p9
12/26/2022
Let
a
,
b
,
c
,
d
a, b, c, d
a
,
b
,
c
,
d
be real numbers. Prove that is
(
a
2
+
b
2
+
1
)
(
c
2
+
d
2
+
1
)
≥
2
(
a
+
c
)
(
b
+
d
)
.
(a^2 + b^2 + 1)(c^2 + d^2 + 1) \ge 2(a + c)(b + d).
(
a
2
+
b
2
+
1
)
(
c
2
+
d
2
+
1
)
≥
2
(
a
+
c
)
(
b
+
d
)
.
algebra
inequalities