MathDB
Problems
Contests
National and Regional Contests
Switzerland Contests
Switzerland - Final Round
2009 Switzerland - Final Round
3
3
Part of
2009 Switzerland - Final Round
Problems
(1)
sum (a-b)(b+c) >=0
Source: Switzerland - 2009 Swiss MO Final Round p3
12/26/2022
Let
a
,
b
,
c
,
d
a, b, c, d
a
,
b
,
c
,
d
be positive real numbers. Prove the following inequality and determine all cases in which the equality holds :
a
−
b
b
+
c
+
b
−
c
c
+
d
+
c
−
d
d
+
a
+
d
−
a
a
+
b
≥
0.
\frac{a - b}{b + c}+\frac{b - c}{c + d}+\frac{c - d}{d + a}+\frac{d - a}{a + b} \ge 0.
b
+
c
a
−
b
+
c
+
d
b
−
c
+
d
+
a
c
−
d
+
a
+
b
d
−
a
≥
0.
algebra
inequalities