MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
IMOC Shortlist
2017-IMOC
A4
A4
Part of
2017-IMOC
Problems
(1)
f(x+f(y))<=xf(y)+x over R, prove no solutions
Source: IMOC 2017 A4
8/12/2021
Show that for all non-constant functions
f
:
R
ā
R
f:\mathbb R\to\mathbb R
f
:
R
ā
R
, there are two real numbers
x
,
y
x,y
x
,
y
such that
f
(
x
+
f
(
y
)
)
>
x
f
(
y
)
+
x
.
f(x+f(y))>xf(y)+x.
f
(
x
+
f
(
y
))
>
x
f
(
y
)
+
x
.
fe
functional equation
Functional inequality
algebra