MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
IMOC Shortlist
2017-IMOC
G6
G6
Part of
2017-IMOC
Problems
(1)
IMOC 2017 G6 ((x + y)^2+(y + z)^2 +(z + x)^2)/(x + y + z)<= a + b + c
Source: https://artofproblemsolving.com/community/c6h1740077p11309077
3/20/2020
A point
P
P
P
lies inside
△
A
B
C
\vartriangle ABC
△
A
BC
such that the values of areas of
△
P
A
B
,
△
P
B
C
,
△
P
C
A
\vartriangle PAB, \vartriangle PBC, \vartriangle PCA
△
P
A
B
,
△
PBC
,
△
PC
A
can form a triangle. Let
B
C
=
a
,
C
A
=
b
,
A
B
=
c
,
P
A
=
x
,
P
B
=
y
,
P
C
=
z
BC = a,CA = b,AB = c, PA = x,PB = y, PC = z
BC
=
a
,
C
A
=
b
,
A
B
=
c
,
P
A
=
x
,
PB
=
y
,
PC
=
z
, prove that
(
x
+
y
)
2
+
(
y
+
z
)
2
+
(
z
+
x
)
2
x
+
y
+
z
≤
a
+
b
+
c
\frac{(x + y)^2 + (y + z)^2 + (z + x)^2}{x + y + z} \le a + b + c
x
+
y
+
z
(
x
+
y
)
2
+
(
y
+
z
)
2
+
(
z
+
x
)
2
≤
a
+
b
+
c
geometry
geometric inequality