MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
IMOC Shortlist
2021-IMOC
A3
A3
Part of
2021-IMOC
Problems
(1)
A inequality
Source: IMOC 2021 A3
8/11/2021
For any real numbers
x
,
y
,
z
x, y, z
x
,
y
,
z
with
x
y
z
+
x
+
y
+
z
=
4
,
xyz + x + y + z = 4,
x
yz
+
x
+
y
+
z
=
4
,
show that
(
y
z
+
6
)
2
+
(
z
x
+
6
)
2
+
(
x
y
+
6
)
2
≥
8
(
x
y
z
+
5
)
.
(yz + 6)^2 + (zx + 6)^2 + (xy + 6)^2 \geq 8 (xyz + 5).
(
yz
+
6
)
2
+
(
z
x
+
6
)
2
+
(
x
y
+
6
)
2
≥
8
(
x
yz
+
5
)
.
inequalities
algebra