MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
Taiwan National Olympiad
1993 Taiwan National Olympiad
6
6
Part of
1993 Taiwan National Olympiad
Problems
(1)
\sum_{k=1}^n\frac{1}{\sin{k}\sin{k+1}}
Source: 2-nd Taiwanese Mathematical Olympiad 1993
1/13/2007
Let
m
m
m
be equal to
1
1
1
or
2
2
2
and
n
<
10799
n<10799
n
<
10799
be a positive integer. Determine all such
n
n
n
for which
∑
k
=
1
n
1
sin
k
sin
(
k
+
1
)
=
m
sin
n
sin
2
1
\sum_{k=1}^{n}\frac{1}{\sin{k}\sin{(k+1)}}=m\frac{\sin{n}}{\sin^{2}{1}}
∑
k
=
1
n
s
i
n
k
s
i
n
(
k
+
1
)
1
=
m
s
i
n
2
1
s
i
n
n
.
trigonometry
induction
irrational number
algebra unsolved
algebra