MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
Taiwan National Olympiad
1996 Taiwan National Olympiad
1
1
Part of
1996 Taiwan National Olympiad
Problems
(1)
find x,y,z
Source: 5-th Taiwanese Mathematical Olympiad 1996
1/11/2007
Suppose that
a
,
b
,
c
a,b,c
a
,
b
,
c
are real numbers in
(
0
,
π
2
)
(0,\frac{\pi}{2})
(
0
,
2
π
)
such that
a
+
b
+
c
=
π
4
a+b+c=\frac{\pi}{4}
a
+
b
+
c
=
4
π
and
tan
a
=
1
x
,
tan
b
=
1
y
,
tan
c
=
1
z
\tan{a}=\frac{1}{x},\tan{b}=\frac{1}{y},\tan{c}=\frac{1}{z}
tan
a
=
x
1
,
tan
b
=
y
1
,
tan
c
=
z
1
, where
x
,
y
,
z
x,y,z
x
,
y
,
z
are positive integer numbers. Find
x
,
y
,
z
x,y,z
x
,
y
,
z
.
trigonometry
number theory proposed
number theory