MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
Taiwan National Olympiad
2002 Taiwan National Olympiad
4
4
Part of
2002 Taiwan National Olympiad
Problems
(1)
$0<x_1,x_2,x_3,x_4\leq\frac{1}{2}$
Source: 11-th Taiwanese Mathematical Olympiad 2002
1/22/2007
Let
0
<
x
1
,
x
2
,
x
3
,
x
4
≤
1
2
0<x_{1},x_{2},x_{3},x_{4}\leq\frac{1}{2}
0
<
x
1
,
x
2
,
x
3
,
x
4
≤
2
1
are real numbers. Prove that
x
1
x
2
x
3
x
4
(
1
−
x
1
)
(
1
−
x
2
)
(
1
−
x
3
)
(
1
−
x
4
)
≤
x
1
4
+
x
2
4
+
x
3
4
+
x
4
4
(
1
−
x
1
)
4
+
(
1
−
x
2
)
4
+
(
1
−
x
3
)
4
+
(
1
−
x
4
)
4
\frac{x_{1}x_{2}x_{3}x_{4}}{(1-x_{1})(1-x_{2})(1-x_{3})(1-x_{4})}\leq\frac{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}}{(1-x_{1})^{4}+(1-x_{2})^{4}+(1-x_{3})^{4}+(1-x_{4})^{4}}
(
1
−
x
1
)
(
1
−
x
2
)
(
1
−
x
3
)
(
1
−
x
4
)
x
1
x
2
x
3
x
4
≤
(
1
−
x
1
)
4
+
(
1
−
x
2
)
4
+
(
1
−
x
3
)
4
+
(
1
−
x
4
)
4
x
1
4
+
x
2
4
+
x
3
4
+
x
4
4
.
inequalities
inequalities proposed