MathDB

Problems(3)

Fill in a "magic" 6x6 square

Source: Taiwan 2014 TST3 Quiz 1, P1

7/18/2014
Consider a 6×66 \times 6 grid. Define a diagonal to be the six squares whose coordinates (i,j)(i,j) (1i,j6)1 \le i,j \le 6) satisfy ijk(mod6)i-j \equiv k \pmod 6 for some k=0,1,,5k=0,1,\dots,5. Hence there are six diagonals.
Determine if it is possible to fill it with the numbers 1,2,,361,2,\dots,36 (each exactly once) such that each row, each column, and each of the six diagonals has the same sum.
analytic geometrymodular arithmeticcombinatorics proposedcombinatorics
Another hexagon geometry -- angles on midpoints of sides

Source: Taiwan 2014 TST3 Quiz 2, P1

7/18/2014
In convex hexagon ABCDEFABCDEF, ABDEAB \parallel DE, BCEFBC \parallel EF, CDFACD \parallel FA, and AB+DE=BC+EF=CD+FA. AB+DE = BC+EF = CD+FA. The midpoints of sides ABAB, BCBC, DEDE, EFEF are A1A_1, B1B_1, D1D_1, E1E_1, and segments A1D1A_1D_1 and B1E1B_1E_1 meet at OO. Prove that D1OE1=12DEF\angle D_1OE_1 = \frac12 \angle DEF.
geometryvectorgeometry proposed
Esoteric Sign Calculation

Source: Taiwan 2014 TST3, Problem 1

7/18/2014
Let R\mathbb R be the real numbers. Set S={1,1}S = \{1, -1\} and define a function sign:RS\operatorname{sign} : \mathbb R \to S by sign(x)={1if x0;1if x<0. \operatorname{sign} (x) = \begin{cases} 1 & \text{if } x \ge 0; \\ -1 & \text{if } x < 0. \end{cases} Fix an odd integer nn. Determine whether one can find n2+nn^2+n real numbers aij,biSa_{ij}, b_i \in S (here 1i,jn1 \le i, j \le n) with the following property: Suppose we take any choice of x1,x2,,xnSx_1, x_2, \dots, x_n \in S and consider the values \begin{align*} y_i &= \operatorname{sign} \left( \sum_{j=1}^n a_{ij} x_j \right),   \forall 1 \le i \le n; \\ z &= \operatorname{sign} \left( \sum_{i=1}^n y_i b_i \right) \end{align*} Then z=x1x2xnz=x_1 x_2 \dots x_n.
functionlinear algebramodular arithmeticnumber theoryTaiwan