MathDB
Problems
Contests
National and Regional Contests
Thailand Contests
Thailand Online MO
2021 Thailand Online MO
P3
P3
Part of
2021 Thailand Online MO
Problems
(1)
$a_{n+1}=(a_1+a_2+\cdots+a_n)^2-1$
Source: Thailand Online MO 2021 P3
4/5/2021
Let
a
1
,
a
2
,
⋯
a_1,a_2,\cdots
a
1
,
a
2
,
⋯
be an infinity sequence of positive integers such that
a
1
=
2021
a_1=2021
a
1
=
2021
and
a
n
+
1
=
(
a
1
+
a
2
+
⋯
+
a
n
)
2
−
1
a_{n+1}=(a_1+a_2+\cdots+a_n)^2-1
a
n
+
1
=
(
a
1
+
a
2
+
⋯
+
a
n
)
2
−
1
for all positive integers
n
n
n
. Prove that for any integer
n
≥
2
n\ge 2
n
≥
2
,
a
n
a_n
a
n
is the product of at least
2
n
2n
2
n
(not necessarily distinct) primes.
Sequence
number theory