MathDB
Problems
Contests
National and Regional Contests
Thailand Contests
Thailand Online MO
2022 Thailand Online MO
7
7
Part of
2022 Thailand Online MO
Problems
(1)
p|a_ib_j-a_jb_i
Source: 2022 Thailand Onlline MO P7
4/4/2022
Let
p
p
p
be a prime number, and let
a
1
,
a
2
,
…
,
a
p
a_1, a_2, \dots , a_p
a
1
,
a
2
,
…
,
a
p
and
b
1
,
b
2
,
…
,
b
p
b_1, b_2, \dots , b_p
b
1
,
b
2
,
…
,
b
p
be
2
p
2p
2
p
(not necessarily distinct) integers chosen from the set
{
1
,
2
,
…
,
p
−
1
}
\{1, 2, \dots , p - 1\}
{
1
,
2
,
…
,
p
−
1
}
. Prove that there exist integers
i
i
i
and
j
j
j
such that
1
≤
i
<
j
≤
p
1 \le i < j \le p
1
≤
i
<
j
≤
p
and
p
p
p
divides
a
i
b
j
−
a
j
b
i
a_ib_j-a_jb_i
a
i
b
j
−
a
j
b
i
.
number theory