MathDB
Problems
Contests
National and Regional Contests
The Philippines Contests
Philippine MO
2024 Philippine Math Olympiad
P2
P2
Part of
2024 Philippine Math Olympiad
Problems
(1)
Double factorial divisibility
Source: Philippine Mathematical Olympiad 2024 P2
2/24/2024
Let
0
!
!
=
1
!
!
=
1
0!!=1!!=1
0
!!
=
1
!!
=
1
and
n
!
!
=
n
⋅
(
n
−
2
)
!
!
n!!=n\cdot (n-2)!!
n
!!
=
n
⋅
(
n
−
2
)!!
for all integers
n
≥
2
n\geq 2
n
≥
2
. Find all positive integers
n
n
n
such that
(
2
n
+
1
)
!
!
−
1
2
n
+
1
\dfrac{(2^n+1)!!-1}{2^{n+1}}
2
n
+
1
(
2
n
+
1
)!!
−
1
is an integer.
factorial
number theory