MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2000 National Olympiad First Round
27
27
Part of
2000 National Olympiad First Round
Problems
(1)
Turkey NMO 2000 1st Round - P27 (Combinatorics)
Source:
7/25/2012
How many different permutations
(
α
1
α
2
α
3
α
4
α
5
)
(\alpha_1 \alpha_2\alpha_3\alpha_4\alpha_5)
(
α
1
α
2
α
3
α
4
α
5
)
of the set
{
1
,
2
,
3
,
4
,
5
}
\{1,2,3,4,5\}
{
1
,
2
,
3
,
4
,
5
}
are there such that
(
α
1
…
α
k
)
(\alpha_1\dots \alpha_k)
(
α
1
…
α
k
)
is not a permutation of the set
{
1
,
…
,
k
}
\{1,\dots ,k\}
{
1
,
…
,
k
}
, for every
1
≤
k
≤
4
1\leq k \leq 4
1
≤
k
≤
4
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
13
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
65
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
71
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
461
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
None
<span class='latex-bold'>(A)</span>\ 13 \qquad<span class='latex-bold'>(B)</span>\ 65 \qquad<span class='latex-bold'>(C)</span>\ 71 \qquad<span class='latex-bold'>(D)</span>\ 461 \qquad<span class='latex-bold'>(E)</span>\ \text{None}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
13
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
65
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
71
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
461
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
None