MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2002 National Olympiad First Round
23
23
Part of
2002 National Olympiad First Round
Problems
(1)
P23 [Combinatorics] - Turkish NMO 1st Round - 2002
Source:
8/10/2014
What is the arithmetic mean of the smallest elements of
r
r
r
-subsets of set
{
1
,
2
,
…
,
n
}
\{1, 2, \dots , n\}
{
1
,
2
,
…
,
n
}
where 1 \leq r \leq n?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
a
)
<
/
s
p
a
n
>
n
+
1
r
+
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
b
)
<
/
s
p
a
n
>
r
(
n
+
1
)
r
+
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
c
)
<
/
s
p
a
n
>
n
r
r
+
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
d
)
<
/
s
p
a
n
>
r
(
n
+
1
)
(
r
+
1
)
n
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
e
)
<
/
s
p
a
n
>
None of above
<span class='latex-bold'>a)</span>\ \dfrac{n+1}{r+1} \qquad<span class='latex-bold'>b)</span>\ \dfrac{r(n+1)}{r+1} \qquad<span class='latex-bold'>c)</span>\ \dfrac{nr}{r+1} \qquad<span class='latex-bold'>d)</span>\ \dfrac{r(n+1)}{(r+1)n} \qquad<span class='latex-bold'>e)</span>\ \text{None of above}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
a
)
<
/
s
p
an
>
r
+
1
n
+
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
b
)
<
/
s
p
an
>
r
+
1
r
(
n
+
1
)
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
c
)
<
/
s
p
an
>
r
+
1
n
r
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
d
)
<
/
s
p
an
>
(
r
+
1
)
n
r
(
n
+
1
)
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
e
)
<
/
s
p
an
>
None of above