MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2010 National Olympiad First Round
17
17
Part of
2010 National Olympiad First Round
Problems
(1)
Turkey NMO 2010 1st Round - P17 (Geometry)
Source:
7/26/2012
Let
A
,
B
,
C
,
D
A,B,C,D
A
,
B
,
C
,
D
be points in the space such that
∣
A
B
∣
=
∣
A
C
∣
=
3
|AB|=|AC|=3
∣
A
B
∣
=
∣
A
C
∣
=
3
,
∣
D
B
∣
=
∣
D
C
∣
=
5
|DB|=|DC|=5
∣
D
B
∣
=
∣
D
C
∣
=
5
,
∣
A
D
∣
=
6
|AD|=6
∣
A
D
∣
=
6
, and
∣
B
C
∣
=
2
|BC|=2
∣
BC
∣
=
2
. Let
P
P
P
be the nearest point of
B
C
BC
BC
to the point
D
D
D
, and
Q
Q
Q
be the nearest point of the plane
A
B
C
ABC
A
BC
to the point
D
D
D
. What is
∣
P
Q
∣
|PQ|
∣
PQ
∣
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
1
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
3
7
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
57
2
11
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
9
2
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
2
2
<span class='latex-bold'>(A)</span>\ \frac{1}{\sqrt 2} \qquad<span class='latex-bold'>(B)</span>\ \frac{3\sqrt 7}{2} \qquad<span class='latex-bold'>(C)</span>\ \frac{57}{2\sqrt{11}} \qquad<span class='latex-bold'>(D)</span>\ \frac{9}{2\sqrt 2} \qquad<span class='latex-bold'>(E)</span>\ 2\sqrt 2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
2
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
2
3
7
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
2
11
57
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
2
2
9
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
2
2
geometry