Let D and E be points on [BC] and [AC] of acute △ABC, respectively. AD and BE meet at F. If ∣AF∣=∣CD∣=2∣BF∣=2∣CE∣, and Area(△ABF)=Area(△DEC), then Area(△AFC)/Area(△BFC)=?<spanclass=′latex−bold′>(A)</span> 4<spanclass=′latex−bold′>(B)</span> 22<spanclass=′latex−bold′>(C)</span> 2<spanclass=′latex−bold′>(D)</span> 2<spanclass=′latex−bold′>(E)</span> 1 geometrytrigonometrytrig identitiesLaw of Sines