MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2012 National Olympiad First Round
35
35
Part of
2012 National Olympiad First Round
Problems
(1)
Turkish NMO First Round - 2012 Problem - 35 {Algebra}
Source:
7/1/2012
For every positive real pair
(
x
,
y
)
(x,y)
(
x
,
y
)
satisfying the equation
x
3
+
y
4
=
x
2
y
x^3+y^4 = x^2y
x
3
+
y
4
=
x
2
y
, if the greatest value of
x
x
x
is
A
A
A
, and the greatest value of
y
y
y
is
B
B
B
, then
A
/
B
=
?
A/B = ?
A
/
B
=
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
2
3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
512
729
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
729
1024
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
3
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
243
256
<span class='latex-bold'>(A)</span>\ \frac{2}{3} \qquad <span class='latex-bold'>(B)</span>\ \frac{512}{729} \qquad <span class='latex-bold'>(C)</span>\ \frac{729}{1024} \qquad <span class='latex-bold'>(D)</span>\ \frac{3}{4} \qquad <span class='latex-bold'>(E)</span>\ \frac{243}{256}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
3
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
729
512
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
1024
729
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
4
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
256
243
inequalities