Let n be an odd integer greater than 11; k∈N, k≥6, n=2k−1.
We define d(x,y)={i∈{1,2,…,n}xi=yi} for T={(x1,x2,…,xn)xi∈{0,1},i=1,2,…,n} and x=(x1,x2,…,xn),y=(y1,y2,…,yn)∈T.
Show that n=23 if T has a subset S satisfying[*]∣S∣=2k
[*]For each x∈T, there exists exacly one y∈S such that d(x,y)≤3 combinatorics proposedcombinatorics