MathDB

Problems(3)

Show that there exists a function

Source: Turkish TST 2011 Problem 3

7/23/2011
Let AA and BB be sets with 201122011^2 and 20102010 elements, respectively. Show that there is a function f:A×ABf:A \times A \to B satisfying the condition f(x,y)=f(y,x)f(x,y)=f(y,x) for all (x,y)A×A(x,y) \in A \times A such that for every function g:ABg:A \to B there exists (a1,a2)A×A(a_1,a_2) \in A \times A with g(a1)=f(a1,a2)=g(a2)g(a_1)=f(a_1,a_2)=g(a_2) and a1a2.a_1 \neq a_2.
functionpigeonhole principlecombinatorics proposedcombinatorics
Binary representations and sum of the digits

Source: Turkish TST 2011 Problem 6

7/23/2011
Let t(n)t(n) be the sum of the digits in the binary representation of a positive integer n,n, and let k2k \geq 2 be an integer.
a. Show that there exists a sequence (ai)i=1(a_i)_{i=1}^{\infty} of integers such that am3a_m \geq 3 is an odd integer and t(a1a2am)=kt(a_1a_2 \cdots a_m)=k for all m1.m \geq 1.
b. Show that there is an integer NN such that t(35(2m+1))>kt(3 \cdot 5 \cdots (2m+1))>k for all integers mN.m \geq N.
floor functionlimitnumber theorygreatest common divisorinductionprime factorizationnumber theory proposed
Determine the number of functions

Source: Turkish TST 2011 Problem 9

7/23/2011
Let pp be a prime, nn be a positive integer, and let Zpn\mathbb{Z}_{p^n} denote the set of congruence classes modulo pn.p^n. Determine the number of functions f:ZpnZpnf: \mathbb{Z}_{p^n} \to \mathbb{Z}_{p^n} satisfying the condition f(a)+f(b)f(a+b+pab)(modpn) f(a)+f(b) \equiv f(a+b+pab) \pmod{p^n} for all a,bZpn.a,b \in \mathbb{Z}_{p^n}.
functionmodular arithmeticinductionnumber theory proposednumber theory