MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
Turkey Team Selection Test
2018 Turkey Team Selection Test
8
8
Part of
2018 Turkey Team Selection Test
Problems
(1)
2018 TST P8
Source: Turkey Team Selection Test 2018 P8
3/26/2019
For integers
m
≥
3
m\geq 3
m
≥
3
,
n
n
n
and
x
1
,
x
2
,
…
,
x
m
x_1,x_2, \ldots , x_m
x
1
,
x
2
,
…
,
x
m
if
x
i
+
1
−
x
i
≡
x
i
−
x
i
−
1
(
m
o
d
n
)
x_{i+1}-x_i \equiv x_i-x_{i-1} (mod n)
x
i
+
1
−
x
i
≡
x
i
−
x
i
−
1
(
m
o
d
n
)
for every
2
≤
i
≤
m
−
1
2\leq i \leq m-1
2
≤
i
≤
m
−
1
, we say that the
m
m
m
-tuple
(
x
1
,
x
2
,
…
,
x
m
)
(x_1,x_2,\ldots , x_m)
(
x
1
,
x
2
,
…
,
x
m
)
is an arithmetic sequence in
(
m
o
d
n
)
(mod n)
(
m
o
d
n
)
. Let
p
≥
5
p\geq 5
p
≥
5
be a prime number and
1
<
a
<
p
−
1
1<a<p-1
1
<
a
<
p
−
1
be an integer. Let
a
1
,
a
2
,
…
,
a
k
{a_1,a_2,\ldots , a_k}
a
1
,
a
2
,
…
,
a
k
be the set of all possible remainders when positive powers of
a
a
a
are divided by
p
p
p
. Show that if a permutation of
a
1
,
a
2
,
…
,
a
k
{a_1,a_2,\ldots , a_k}
a
1
,
a
2
,
…
,
a
k
is an arithmetic sequence in
(
m
o
d
p
)
(mod p)
(
m
o
d
p
)
, then
k
=
p
−
1
k=p-1
k
=
p
−
1
.
number theory