MathDB

Problems(4)

1997*5^1998 mod 10000 (Ukraine 1998 Grade 8 P4)

Source:

6/4/2021
Determine the last four decimal digits of the number 1997519981997\cdot5^{1998}.
number theory
floor(x/y)=floor(nx)/floor(ny) for all n in N (Ukraine 1998 Grade 9 P4)

Source:

6/4/2021
Real numbers xx and yy not less than 11 have the property that xy=nxnyfor any nN.\left\lfloor\frac xy\right\rfloor=\frac{\lfloor nx\rfloor}{\lfloor ny\rfloor}\enspace\text{for any }n\in\mathbb N.Prove that either x=yx=y or xx and yy are integers, one dividing the other.
number theoryalgebrafloor function
functional inequality, bounding f

Source: Ukraine 1998 Grade 10 P4

6/5/2021
A function ff defined on the interval [1,+)[1,+\infty) satisfies f(2x)2f(x)xfor x1.\frac{f(2x)}{\sqrt2}\le f(x)\le x\enspace\text{for }x\ge1.Prove that f(x)<2xf(x)<\sqrt{2x} for all x1x\ge1.
inequalitiesfefunctional equationfunctional inequalitiesfunctionFunctional Equations
f(f(x)+y)=f(x)+f(y), prove f(f(x))=f(x)

Source: Ukraine 1998 Grade 11 P4

6/6/2021
Consider a function f:[0,1][0,1]f:[0,1]\to[0,1]. Suppose that there is a real number 0<λ<10<\lambda<1 such that f(λ){0,λ}f(\lambda)\notin\{0,\lambda\} and the equality f(f(x)+y)=f(x)+f(y)f(f(x)+y)=f(x)+f(y)holds whenever the function is defined on the arguments.
(a) Give an example of such a function. (b) Prove that for some x[0,1]x\in[0,1], f(f(f(19x)))=f(f(f(98x))).\underbrace{f(f(\cdots f(}_{19}x)\cdots))=\underbrace{f(f(\cdots f(}_{98}x)\cdots)).
fefunctional equationFunctional Equationsalgebra