Two players by turn paint the circles on the given picture each with his colour. At the end, the rest of the area of each of small triangles is painted by the colour of the majority of vertices of this triangle. The winner is one who gets larger area of his colour (the area of circles is taken into account). Does any of them have winning strategy? If yes, then who wins?
\begin{picture}(60,60) \put(5,3){\put(3,0){\line(6,0){8}} \put(17,0){\line(6,0){8}} \put(31,0){\line(6,0){8}} \put(45,0){\line(6,0){8}} \put(10,14){\line(6,0){8}} \put(24,14){\line(6,0){8}} \put(38,14){\line(6,0){8}} \put(17,28){\line(6,0){8}} \put(31,28){\line(6,0){8}} \put(24,42){\line(6,0){8}} \put(1,2){\line(1,2){5}} \put(15,2){\line(1,2){5}} \put(29,2){\line(1,2){5}} \put(43,2){\line(1,2){5}} \put(8,16){\line(1,2){5}} \put(22,16){\line(1,2){5}} \put(36,16){\line(1,2){5}} \put(15,30){\line(1,2){5}} \put(29,30){\line(1,2){5}} \put(22,44){\line(1,2){5}} \put(13,2){\line( \minus{} 1,2){5}} \put(27,2){\line( \minus{} 1,2){5}} \put(41,2){\line( \minus{} 1,2){5}} \put(55,2){\line( \minus{} 1,2){5}} \put(20,16){\line( \minus{} 1,2){5}} \put(34,16){\line( \minus{} 1,2){5}} \put(48,16){\line( \minus{} 1,2){5}} \put(27,30){\line( \minus{} 1,2){5}} \put(41,30){\line( \minus{} 1,2){5}} \put(34,44){\line( \minus{} 1,2){5}} \put(0,0){\circle{6}} \put(14,0){\circle{6}} \put(28,0){\circle{6}} \put(42,0){\circle{6}} \put(56,0){\circle{6}} \put(7,14){\circle{6}} \put(21,14){\circle{6}} \put(35,14){\circle{6}} \put(49,14){\circle{6}} \put(14,28){\circle{6}} \put(28,28){\circle{6}} \put(42,28){\circle{6}} \put(21,42){\circle{6}} \put(35,42){\circle{6}} \put(28,56){\circle{6}}} \end{picture}