MathDB
Problems
Contests
National and Regional Contests
Ukraine Contests
Random Geometry Problems from Ukrainian Contests
Old Kyiv MO Geometry
Kyiv City MO 1984-93 - geometry
1993.10.5
1993.10.5
Part of
Kyiv City MO 1984-93 - geometry
Problems
(1)
cotA +cotB+ cotC=(a^2+b^2+c^2)/4S 1993 Kyiv City MO 10.5
Source:
7/21/2021
Prove that for the sides
a
,
b
,
c
a, b, c
a
,
b
,
c
, the angles
A
,
B
,
C
A, B, C
A
,
B
,
C
and the area
S
S
S
of the triangle holds
cot
A
+
cot
B
+
cot
C
=
a
2
+
b
2
+
c
2
4
S
.
\cot A+ \cot B + \cot C = \frac{a^2+b^2+c^2}{4S}.
cot
A
+
cot
B
+
cot
C
=
4
S
a
2
+
b
2
+
c
2
.
trigonometry
geometry