MathDB
Problems
Contests
National and Regional Contests
Ukraine Contests
Random Geometry Problems from Ukrainian Contests
Old Kyiv MO Geometry
Kyiv City MO Seniors 2003+ geometry
2015.11.4.1
2015.11.4.1
Part of
Kyiv City MO Seniors 2003+ geometry
Problems
(1)
MB = MC wanted, angle bisector, perpendiculars (2015 Kyiv City MO 11.4.1)
Source:
9/3/2020
On the bisector of the angle
B
A
C
BAC
B
A
C
of the triangle
A
B
C
ABC
A
BC
we choose the points
B
1
,
C
1
{{B} _ {1}}, \, \, {{C} _ {1}}
B
1
,
C
1
for which
B
B
1
⊥
A
B
B {{B} _ {1 }}\perp AB
B
B
1
⊥
A
B
,
C
C
1
⊥
A
C
C {{C} _ {1}} \perp AC
C
C
1
⊥
A
C
. The point
M
M
M
is the midpoint of the segment
B
1
C
1
{{B} _ {1}} {{C} _ {1}}
B
1
C
1
. Prove that
M
B
=
M
C
MB = MC
MB
=
MC
.
geometry
angle bisector
equal segments
perpendicular