MathDB
Problems
Contests
National and Regional Contests
Vietnam Contests
Hanoi Open Mathematics Competition
2008 Hanoi Open Mathematics Competitions
5
5
Part of
2008 Hanoi Open Mathematics Competitions
Problems
(2)
4x4 (absolute) inequalites imply a 5th inequality (HOMC 2008 J Q5)
Source:
7/25/2019
Suppose
x
,
y
,
z
,
t
x, y, z, t
x
,
y
,
z
,
t
are real numbers such that
{
∣
x
+
y
+
z
−
t
∣
≤
1
∣
y
+
z
+
t
−
x
∣
≤
1
∣
z
+
t
+
x
−
y
∣
≤
1
∣
t
+
x
+
y
−
z
∣
≤
1
\begin{cases} |x + y + z -t |\le 1 \\ |y + z + t - x|\le 1 \\ |z + t + x - y|\le 1 \\ |t + x + y - z|\le 1 \end{cases}
⎩
⎨
⎧
∣
x
+
y
+
z
−
t
∣
≤
1
∣
y
+
z
+
t
−
x
∣
≤
1
∣
z
+
t
+
x
−
y
∣
≤
1
∣
t
+
x
+
y
−
z
∣
≤
1
Prove that
x
2
+
y
2
+
z
2
+
t
2
≤
1
x^2 + y^2 + z^2 + t^2 \le 1
x
2
+
y
2
+
z
2
+
t
2
≤
1
.
inequalities
algebra
max P(x)- min P(x)= b-a, for all x\in [a,b] (HOMC 2008 Q5)
Source:
7/25/2019
Find all polynomials
P
(
x
)
P(x)
P
(
x
)
of degree
1
1
1
such that
m
a
x
a
≤
x
≤
b
P
(
x
)
−
m
i
n
a
≤
x
≤
b
P
(
x
)
=
b
−
a
\underset {a\le x\le b}{max} P(x) - \underset {a\le x\le b}{min} P(x) =b-a
a
≤
x
≤
b
ma
x
P
(
x
)
−
a
≤
x
≤
b
min
P
(
x
)
=
b
−
a
,
∀
a
,
b
∈
R
\forall a,b\in R
∀
a
,
b
∈
R
where
a
<
b
a < b
a
<
b
polynomial
algebra