MathDB
Problems
Contests
National and Regional Contests
Vietnam Contests
Hanoi Open Mathematics Competition
2011 Hanoi Open Mathematics Competitions
2011 Hanoi Open Mathematics Competitions
Part of
Hanoi Open Mathematics Competition
Subcontests
(12)
3
1
Hide problems
\sqrt[3]{(2011)^3 + 3x(2011)^2 + 4x 2011+ 5} (HOMC 2011 Q3)
What is the largest integer less than to \sqrt[3]{(2011)^3 + 3 \times (2011)^2 + 4 \times 2011+ 5} ?(A)
2010
2010
2010
, (B)
2011
2011
2011
, (C)
2012
2012
2012
, (D)
2013
2013
2013
, (E) None of the above.
1
2
Hide problems
total no of intersections of 3 lines in plane (HOMC 2011 J Q1)
Three lines are drawn in a plane. Which of the following could NOT be the total number of points of intersections?(A)
0
0
0
(B)
1
1
1
(C)
2
2
2
(D)
3
3
3
(E) They all could.
divisible by 8 or at least one of its digits is 8 (HOMC 2011 Q1)
An integer is called "octal" if it is divisible by
8
8
8
or if at least one of its digits is
8
8
8
. How many integers between
1
1
1
and
100
100
100
are octal?(A):
22
22
22
, (B):
24
24
24
, (C):
27
27
27
, (D):
30
30
30
, (E):
33
33
33
4
2
Hide problems
4 statements on real, how many correct? (HOMC 2011 J Q4)
Among the five statements on real numbers below, how many of them are correct? "If
a
<
b
<
0
a < b < 0
a
<
b
<
0
then
a
<
b
2
a < b^2
a
<
b
2
" , "If
0
<
a
<
b
0 < a < b
0
<
a
<
b
then
a
<
b
2
a < b^2
a
<
b
2
", "If
a
3
<
b
3
a^3 < b^3
a
3
<
b
3
then
a
<
b
a < b
a
<
b
", "If
a
2
<
b
2
a^2 < b^2
a
2
<
b
2
then
a
<
b
a < b
a
<
b
", "If
∣
a
∣
<
∣
b
∣
|a| < |b|
∣
a
∣
<
∣
b
∣
then
a
<
b
a < b
a
<
b
",(A)
0
0
0
, (B)
1
1
1
, (C)
2
2
2
, (D)
3
3
3
, (E)
4
4
4
1 + x + x^2 + x^3 + ...+ x^{2011} >=0 for x>=-1 (HOMC 2011 Q4)
Prove that
1
+
x
+
x
2
+
x
3
+
.
.
.
+
x
2011
≥
0
1 + x + x^2 + x^3 + ...+ x^{2011} \ge 0
1
+
x
+
x
2
+
x
3
+
...
+
x
2011
≥
0
for every
x
≥
−
1
x \ge - 1
x
≥
−
1
.
7
2
Hide problems
4a^2 + 3a + 5 is divisible by 6 (HOMC 2011 Q7)
How many positive integers a less than
100
100
100
such that
4
a
2
+
3
a
+
5
4a^2 + 3a + 5
4
a
2
+
3
a
+
5
is divisible by
6
6
6
.
system x + y = 3 and x^4 - y^4 = 8x - y (HOMC 2011 J Q7)
Find all pairs
(
x
,
y
)
(x, y)
(
x
,
y
)
of real numbers satisfying the system :
{
x
+
y
=
3
x
4
−
y
4
=
8
x
−
y
\begin{cases} x + y = 3 \\ x^4 - y^4 = 8x - y \end{cases}
{
x
+
y
=
3
x
4
−
y
4
=
8
x
−
y
8
1
Hide problems
min of |x + 1| + |x + 5|+ |x + 14| + |x + 97| + |x + 1920| (HOMC 2011 J Q8)
Find the minimum value of
S
=
∣
x
+
1
∣
+
∣
x
+
5
∣
+
∣
x
+
14
∣
+
∣
x
+
97
∣
+
∣
x
+
1920
∣
S = |x + 1| + |x + 5|+ |x + 14| + |x + 97| + |x + 1920|
S
=
∣
x
+
1∣
+
∣
x
+
5∣
+
∣
x
+
14∣
+
∣
x
+
97∣
+
∣
x
+
1920∣
.
9
2
Hide problems
1 + x + x^2 + x^3 + ... + x^{2011} = 0 (HOMC 2011 J Q9)
Solve the equation
1
+
x
+
x
2
+
x
3
+
.
.
.
+
x
2011
=
0
1 + x + x^2 + x^3 + ... + x^{2011} = 0
1
+
x
+
x
2
+
x
3
+
...
+
x
2011
=
0
.
function in N*xN*, f(x+1, y) = y[f(x, y)+f(x, y -1)], f(5, 5) (HOMC 2011 Q9)
For every pair of positive integers
(
x
,
y
)
(x, y)
(
x
,
y
)
we define
f
(
x
,
y
)
f(x,y)
f
(
x
,
y
)
as follows:
f
(
x
,
1
)
=
x
f(x,1) = x
f
(
x
,
1
)
=
x
f
(
x
,
y
)
=
0
f(x,y) = 0
f
(
x
,
y
)
=
0
if
y
>
x
y > x
y
>
x
f
(
x
+
1
,
y
)
=
y
[
f
(
x
,
y
)
+
f
(
x
,
y
−
1
)
]
f(x +1,y) = y[f(x,y)+ f(x, y-1)]
f
(
x
+
1
,
y
)
=
y
[
f
(
x
,
y
)
+
f
(
x
,
y
−
1
)]
Evaluate
f
(
5
,
5
)
f(5, 5)
f
(
5
,
5
)
.
6
2
Hide problems
diophantine m^2 + n^2 + 3 = 4(m + n) (HOMC 2011 J Q6)
Find all positive integers
(
m
,
n
)
(m,n)
(
m
,
n
)
such that
m
2
+
n
2
+
3
=
4
(
m
+
n
)
m^2 + n^2 + 3 = 4(m + n)
m
2
+
n
2
+
3
=
4
(
m
+
n
)
system x + y = 2 and x^4 - y^4 = 5x - 3y (HOMC 2011 Q6)
Find all pairs
(
x
,
y
)
(x, y)
(
x
,
y
)
of real numbers satisfying the system :
{
x
+
y
=
2
x
4
−
y
4
=
5
x
−
3
y
\begin{cases} x + y = 2 \\ x^4 - y^4 = 5x - 3y \end{cases}
{
x
+
y
=
2
x
4
−
y
4
=
5
x
−
3
y
11
1
Hide problems
area of a quadrilateral (2011 HOMC Junior Q11)
Given a quadrilateral
A
B
C
D
ABCD
A
BC
D
with
A
B
=
B
C
=
3
AB = BC =3
A
B
=
BC
=
3
cm,
C
D
=
4
CD = 4
C
D
=
4
cm,
D
A
=
8
DA = 8
D
A
=
8
cm and
∠
D
A
B
+
∠
A
B
C
=
18
0
o
\angle DAB + \angle ABC = 180^o
∠
D
A
B
+
∠
A
BC
=
18
0
o
. Calculate the area of the quadrilateral.
5
2
Hide problems
The perfect squares
Let M = 7!.8!.9!.10!.11!.12!. How many factors of M are perfect squares ?
max of abc if a+2b+3c=100, a,b,c\in N* (HOMC 2011 Q5)
Let
a
,
b
,
c
a, b, c
a
,
b
,
c
be positive integers such that
a
+
2
b
+
3
c
=
100
a + 2b +3c = 100
a
+
2
b
+
3
c
=
100
. Find the greatest value of
M
=
a
b
c
M = abc
M
=
ab
c
2
2
Hide problems
The last digit of the number
The last digit of the number A =
7
2011
7^{2011}
7
2011
is ?
compare expontentials with sqrt (HOMC 2011 Q2)
What is the smallest number ?(A)
3
3
3
(B)
2
2
2^{\sqrt2}
2
2
(C)
2
1
+
1
2
2^{1+\frac{1}{\sqrt2}}
2
1
+
2
1
(D)
2
1
2
+
2
2
3
2^{\frac12} + 2^{\frac23}
2
2
1
+
2
3
2
(E)
2
5
3
2^{\frac53}
2
3
5
10
2
Hide problems
another sum PQ+PE+QF inside a right triangle (2011 HOMC Junior Q10)
Consider a right -angle triangle
A
B
C
ABC
A
BC
with
A
=
9
0
o
A=90^{o}
A
=
9
0
o
,
A
B
=
c
AB=c
A
B
=
c
and
A
C
=
b
AC=b
A
C
=
b
. Let
P
∈
A
C
P\in AC
P
∈
A
C
and
Q
∈
A
B
Q\in AB
Q
∈
A
B
such that
∠
A
P
Q
=
∠
A
B
C
\angle APQ=\angle ABC
∠
A
PQ
=
∠
A
BC
and
∠
A
Q
P
=
∠
A
C
B
\angle AQP = \angle ACB
∠
A
QP
=
∠
A
CB
. Calculate
P
Q
+
P
E
+
Q
F
PQ+PE+QF
PQ
+
PE
+
QF
, where
E
E
E
and
F
F
F
are the projections of
B
B
B
and
Q
Q
Q
onto
B
C
BC
BC
, respectively.
Prove that equality
Two bisectors BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC. Denote by H the point in BC such that OH perpendicular BC. Prove that AB.AC = 2HB.HC.
12
2
Hide problems
Determine the minimum value
Suppose that
a
>
0
;
b
>
0
a > 0; b > 0
a
>
0
;
b
>
0
and
a
+
b
≤
1
a + b \leq 1
a
+
b
≤
1
. Determine the minimum value of
M
=
1
a
b
+
1
a
2
+
a
b
+
1
a
b
+
b
2
+
1
a
2
+
b
2
M=\frac{1}{ab} +\frac{1}{a^2+ab}+\frac{1}{ab+b^2}+\frac{1}{a^2+b^2}
M
=
ab
1
+
a
2
+
ab
1
+
ab
+
b
2
1
+
a
2
+
b
2
1
.
Help me[homc2011]
Suppose that
∣
a
x
2
+
b
x
+
c
∣
≥
∣
x
2
−
1
∣
|ax^2+bx+c| \geq |x^2-1|
∣
a
x
2
+
b
x
+
c
∣
≥
∣
x
2
−
1∣
for all real numbers x. Prove that
∣
b
2
−
4
a
c
∣
≥
4
|b^2-4ac|\geq 4
∣
b
2
−
4
a
c
∣
≥
4
.