MathDB
Problems
Contests
National and Regional Contests
Vietnam Contests
Hanoi Open Mathematics Competition
2015 Hanoi Open Mathematics Competitions
11
11
Part of
2015 Hanoi Open Mathematics Competitions
Problems
(1)
AD x BI x CH <= AC x BD x OK (2015 HOMC Junior - Senior Q11)
Source:
7/19/2019
Given a convex quadrilateral
A
B
C
D
ABCD
A
BC
D
. Let
O
O
O
be the intersection point of diagonals
A
C
AC
A
C
and
B
D
BD
B
D
and let
I
,
K
,
H
I , K , H
I
,
K
,
H
be feet of perpendiculars from
B
,
O
,
C
B , O , C
B
,
O
,
C
to
A
D
AD
A
D
, respectively. Prove that
A
D
×
B
I
×
C
H
≤
A
C
×
B
D
×
O
K
AD \times BI \times CH \le AC \times BD \times OK
A
D
×
B
I
×
C
H
≤
A
C
×
B
D
×
O
K
.
geometry
convex quadrilateral
perpendiculars