MathDB

Problems(2)

Simple Inequality

Source: Pre-VMO 2012 - Round 2 - Problem 1

12/25/2011
For a,b,c>0:  abc=1a,b,c>0: \; abc=1 prove that a3+b3+c3+6(a+b+c)2a^3+b^3+c^3+6 \ge (a+b+c)^2
inequalitieslogarithmscalculusderivativeinequalities proposed
2^n-1 | Sigma(2^n_i) => k>=n

Source: Pre-VMO 2012 - Round 2 - Problem 5

12/26/2011
Let n2n \geq 2 be a positive integer. Suppose there exist non-negative integers n1,n2,,nk{n_1},{n_2},\ldots,{n_k} such that 2n1i=1k2ni2^n - 1 \mid \sum_{i = 1}^k {{2^{{n_i}}}}. Prove that knk \ge n.
modular arithmeticnumber theory proposednumber theory