2
Part of 1987 Vietnam National Olympiad
Problems(2)
two sequences
Source: Vietnam NMO 1987 Problem 2
2/4/2009
Sequences and are constructed as follows: x_0 \equal{} 365, x_{n\plus{}1} \equal{} x_n\left(x^{1986} \plus{} 1\right) \plus{} 1622, and y_0 \equal{} 16, y_{n\plus{}1} \equal{} y_n\left(y^3 \plus{} 1\right) \minus{} 1952, for all . Prove that \left|x_n\minus{} y_k\right|\neq 0 for any positive integers , .
algorithmalgebrapolynomialmodular arithmeticalgebra unsolved
Differentiable function
Source: Vietnam NMO 1987 Problem 5
2/4/2009
Let f : [0, \plus{}\infty) \to \mathbb R be a differentiable function. Suppose that and for all . Prove that there exists \lim_{x\to\plus{}\infty}f(x).
functiontrigonometrylimitintegrationalgebra unsolvedalgebra