MathDB
Problems
Contests
National and Regional Contests
Vietnam Contests
Vietnam National Olympiad
2018 Vietnam National Olympiad
5
5
Part of
2018 Vietnam National Olympiad
Problems
(1)
VMO 2018 P5
Source: Vietnam MO 2nd Day 1st Problem
1/12/2018
For two positive integers
n
n
n
and
d
d
d
, let
S
n
(
d
)
S_n(d)
S
n
(
d
)
be the set of all ordered
d
d
d
-tuples
(
x
1
,
x
2
,
…
,
x
d
)
(x_1,x_2,\dots ,x_d)
(
x
1
,
x
2
,
…
,
x
d
)
that satisfy all of the following conditions: i.
x
i
∈
{
1
,
2
,
…
,
n
}
x_i\in \{1,2,\dots ,n\}
x
i
∈
{
1
,
2
,
…
,
n
}
for every
i
∈
{
1
,
2
,
…
,
d
}
i\in\{1,2,\dots ,d\}
i
∈
{
1
,
2
,
…
,
d
}
; ii.
x
i
≠
x
i
+
1
x_i\ne x_{i+1}
x
i
=
x
i
+
1
for every
i
∈
{
1
,
2
,
…
,
d
−
1
}
i\in\{1,2,\dots ,d-1\}
i
∈
{
1
,
2
,
…
,
d
−
1
}
; iii. There does not exist
i
,
j
,
k
,
l
∈
{
1
,
2
,
…
,
d
}
i,j,k,l\in\{1,2,\dots ,d\}
i
,
j
,
k
,
l
∈
{
1
,
2
,
…
,
d
}
such that
i
<
j
<
k
<
l
i<j<k<l
i
<
j
<
k
<
l
and
x
i
=
x
k
,
x
j
=
x
l
x_i=x_k,\, x_j=x_l
x
i
=
x
k
,
x
j
=
x
l
; a. Compute
∣
S
3
(
5
)
∣
|S_3(5)|
∣
S
3
(
5
)
∣
b. Prove that
∣
S
n
(
d
)
∣
>
0
|S_n(d)|>0
∣
S
n
(
d
)
∣
>
0
if and only if
d
≤
2
n
−
1
d\leq 2n-1
d
≤
2
n
−
1
.
combinatorics