MathDB

Problems(2)

Arbitrary integers not smaller than k

Source: Vietnam TST 1997, Problem 4

7/28/2008
The function f:NZ f : \mathbb{N} \to \mathbb{Z} is defined by f(0) \equal{} 2, f(1) \equal{} 503 and f(n \plus{} 2) \equal{} 503f(n \plus{} 1) \minus{} 1996f(n) for all nN n \in\mathbb{N}. Let s1 s_1, s2 s_2, \ldots, sk s_k be arbitrary integers not smaller than k k, and let p(si) p(s_i) be an arbitrary prime divisor of f(2si) f\left(2^{s_i}\right), ( i \equal{} 1, 2, \ldots, k). Prove that, for any positive integer t t (tk t\le k), we have 2^t \Big | \sum_{i \equal{} 1}^kp(s_i) if and only if 2tk 2^t | k.
functionalgebrapolynomialinductionnumber theoryrelatively primenumber theory unsolved
Prove that there is a unique point satisfying conditions

Source: Vietnam TST 1997, Problem 1

7/28/2008
Let ABCD ABCD be a given tetrahedron, with BC \equal{} a, CA \equal{} b, AB \equal{} c, DA \equal{} a_1, DB \equal{} b_1, DC \equal{} c_1. Prove that there is a unique point P P satisfying PA^2 \plus{} a_1^2 \plus{} b^2 \plus{} c^2 \equal{} PB^2 \plus{} b_1^2 \plus{} c^2 \plus{} a^2 \equal{} PC^2 \plus{} c_1^2 \plus{} a^2 \plus{} b^2 \equal{} PD^2 \plus{} a_1^2 \plus{} b_1^2 \plus{} c_1^2 and for this point P P we have PA^2 \plus{} PB^2 \plus{} PC^2 \plus{} PD^2 \ge 4R^2, where R R is the circumradius of the tetrahedron ABCD ABCD. Find the necessary and sufficient condition so that this inequality is an equality.
geometry3D geometrytetrahedroncircumcircleinequalitiesanalytic geometrygeometry unsolved