MathDB
Problems
Contests
National and Regional Contests
Vietnam Contests
Vietnam Team Selection Test
2018 Vietnam Team Selection Test
6
6
Part of
2018 Vietnam Team Selection Test
Problems
(1)
2018 VNTST Problem 6
Source: 2018 Vietnam Team Selection Test
3/31/2018
Triangle
A
B
C
ABC
A
BC
circumscribed
(
O
)
(O)
(
O
)
has
A
A
A
-excircle
(
J
)
(J)
(
J
)
that touches
A
B
,
B
C
,
A
C
AB,\ BC,\ AC
A
B
,
BC
,
A
C
at
F
,
D
,
E
F,\ D,\ E
F
,
D
,
E
, resp.a.
L
L
L
is the midpoint of
B
C
BC
BC
. Circle with diameter
L
J
LJ
L
J
cuts
D
E
,
D
F
DE,\ DF
D
E
,
D
F
at
K
,
H
K,\ H
K
,
H
. Prove that
(
B
D
K
)
,
(
C
D
H
)
(BDK),\ (CDH)
(
B
DK
)
,
(
C
DH
)
has an intersecting point on
(
J
)
(J)
(
J
)
. b. Let
E
F
∩
B
C
=
{
G
}
EF\cap BC =\{G\}
EF
∩
BC
=
{
G
}
and
G
J
GJ
G
J
cuts
A
B
,
A
C
AB,\ AC
A
B
,
A
C
at
M
,
N
M,\ N
M
,
N
, resp.
P
∈
J
B
P\in JB
P
∈
J
B
and
Q
∈
J
C
Q\in JC
Q
∈
J
C
such that
∠
P
A
B
=
∠
Q
A
C
=
90
∘
.
\angle PAB=\angle QAC=90{}^\circ .
∠
P
A
B
=
∠
Q
A
C
=
90
∘
.
P
M
∩
Q
N
=
{
T
}
PM\cap QN=\{T\}
PM
∩
QN
=
{
T
}
and
S
S
S
is the midpoint of the larger
B
C
BC
BC
-arc of
(
O
)
(O)
(
O
)
.
(
I
)
(I)
(
I
)
is the incircle of
A
B
C
ABC
A
BC
. Prove that
S
I
∩
A
T
∈
(
O
)
SI\cap AT\in (O)
S
I
∩
A
T
∈
(
O
)
.
geometry
incircle
excircle