MathDB
Problems
Contests
National and Regional Contests
Vietnam Contests
Vietnam Team Selection Test
2020 Vietnam Team Selection Test
1
1
Part of
2020 Vietnam Team Selection Test
Problems
(1)
\sum_{i \notin X} b_i= \sum_{i \in X} b_i with 0<b_1 <b_2 <...<b_n wanted
Source: 2020 Vietnam Team Selection Test p1 VNTST
11/13/2020
Given that
n
>
2
n> 2
n
>
2
is a positive integer and a sequence of positive integers
a
1
<
a
2
<
.
.
.
<
a
n
a_1 <a_2 <...<a_n
a
1
<
a
2
<
...
<
a
n
. In the subsets of the set
{
1
,
2
,
.
.
.
,
n
}
\{1,2,..., n\}
{
1
,
2
,
...
,
n
}
, there a subset
X
X
X
such that
∣
∑
i
∉
X
a
i
−
∑
i
∈
X
a
i
∣
| \sum_{i \notin X} a_i -\sum_{i \in X} a_i |
∣
∑
i
∈
/
X
a
i
−
∑
i
∈
X
a
i
∣
is the smallest . Prove that there exists a sequence of positive integers
0
<
b
1
<
b
2
<
.
.
.
<
b
n
0<b_1 <b_2 <...<b_n
0
<
b
1
<
b
2
<
...
<
b
n
such that
∑
i
∉
X
b
i
=
∑
i
∈
X
b
i
\sum_{i \notin X} b_i= \sum_{i \in X} b_i
∑
i
∈
/
X
b
i
=
∑
i
∈
X
b
i
.In case this doesn't make sense, have a look at [url=https://drive.google.com/file/d/1xoBhJlG0xHwn6zAAA7AZDoaAqzZue-73/view]original wording in Vietnamese.
algebra
Sum
min