Let p be an odd prime number, and let m≥0 and N≥1 be integers. Let Λ be a free Z/pNZ-module of rank 2m+1, equipped with a perfect symmetric Z/pNZ-bilinear form
(,):Λ×Λ→Z/pNZ.
Here ``perfect'' means that the induced map
\Lambda \to \text{Hom}_{\mathbb{Z}/p^N\mathbb{Z}}(\Lambda, \mathbb{Z}/p^N\mathbb{Z}), x \mapsto (x,\cdot)
is an isomorphism. Find the cardinality of the set
{x∈Λ:(x,x)=0},
expressed in terms of p,m,N. vectorlinear algebracollege contestsmodular arithmetic