MathDB
Problems
Contests
Undergraduate contests
Brazil Undergrad MO
2016 Brazil Undergrad MO
4
4
Part of
2016 Brazil Undergrad MO
Problems
(1)
Power of a matrix with integer entries?
Source: 38th Brazilian Undergrad MO (2016) - Second Day, Problem 4
11/25/2016
Let
A
=
(
<
/
b
r
>
4
−
5
2
5
−
3
<
/
b
r
>
)
A=\left( \begin{array}{cc}</br>4 & -\sqrt{5} \\ 2\sqrt{5} & -3</br>\end{array} \right)
A
=
(
<
/
b
r
>
4
2
5
−
5
−
3
<
/
b
r
>
)
Find all pairs of integers
m
,
n
m,n
m
,
n
with
n
≥
1
n \geq 1
n
≥
1
and
∣
m
∣
≤
n
|m| \leq n
∣
m
∣
≤
n
such as all entries of
A
n
−
(
m
+
n
2
)
A
A^n-(m+n^2)A
A
n
−
(
m
+
n
2
)
A
are integer.
Brazilian Undergrad MO 2016
linear algebra
matrix