Prove that: \det(A)=\frac{1}{n!}\left| \begin{array}{llllll}\mbox{tr}(A) & 1 & 0 & \ldots & \ldots & 0 \\ \mbox{tr}(A^{2}) & \mbox{tr}(A) & 2 & 0 & \ldots & 0 \\ \mbox{tr}(A^{3}) & \mbox{tr}(A^{2}) & \mbox{tr}(A) & 3 & & \vdots \\ \vdots & & & & & n-1 \\ \mbox{tr}(A^{n}) & \mbox{tr}(A^{n-1}) & \mbox{tr}(A^{n-2}) & \ldots & \ldots & \mbox{tr}(A) \end{array}\right|