Let 0<q1≤p1<1 and p1+q1=1. Let uk, vk, ak and bk be non-negative real sequences such as uk2>akp and vk>bkq, where k=1,2,⋯,n. If 0<m1≤uk≤M1 and 0<m2≤vk≤M2 , then (k=1∑n(lp(uk+vk)2−(ak+bk)p))p1≥(k=1∑n(uk2−akp))p1(k=1∑n(vk2−bkp))p1where l=2m1M1m2M2M1M2+m1m2 inequalitiesSummationSequences