MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1954 Miklós Schweitzer
2
2
Part of
1954 Miklós Schweitzer
Problems
(1)
Miklós Schweitzer 1954- Problem 2
Source: Miklós Schweitzer 1954- Problem 2
8/3/2015
2. Show that the series
∑
n
=
1
∞
1
n
s
i
n
(
a
s
i
n
(
2
n
π
N
)
)
e
b
c
o
s
(
2
n
π
N
)
\sum_{n=1}^{\infty}\frac{1}{n}sin(asin(\frac{2n\pi}{N}))e^{bcos(\frac{2n\pi}{N})}
∑
n
=
1
∞
n
1
s
in
(
a
s
in
(
N
2
nπ
))
e
b
cos
(
N
2
nπ
)
is convergent for every positive integer N and any real numbers a and b. (S. 25)
series
Sequences
college contests