MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1954 Miklós Schweitzer
5
5
Part of
1954 Miklós Schweitzer
Problems
(1)
Miklós Schweitzer 1954- Problem 5
Source:
9/29/2015
5. Let
ξ
1
,
ξ
2
,
…
,
ξ
n
,
.
.
.
\xi _{1},\xi _{2},\dots ,\xi _{n},...
ξ
1
,
ξ
2
,
…
,
ξ
n
,
...
be independent random variables of uniform distribution in
(
0
,
1
)
(0,1)
(
0
,
1
)
. Show that the distribution of the random variable
η
n
=
n
∏
k
=
1
n
(
1
−
ξ
k
k
)
(
n
=
1
,
2
,
.
.
.
)
\eta _{n}= \sqrt[]{n}\prod_{k=1}^{n}(1-\frac{\xi _{k}}{k}) (n= 1,2,...)
η
n
=
n
∏
k
=
1
n
(
1
−
k
ξ
k
)
(
n
=
1
,
2
,
...
)
tends to a limit distribution for
n
→
∞
n \to \infty
n
→
∞
. (P. 6)
probability
college contests