MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1957 Miklós Schweitzer
4
4
Part of
1957 Miklós Schweitzer
Problems
(1)
Miklós Schweitzer 1957- Problem 4
Source:
10/16/2015
4. Let
F
ϵ
(
0
<
ϵ
<
1
)
F_{\epsilon} (0<\epsilon<1)
F
ϵ
(
0
<
ϵ
<
1
)
denote the class of non-negative piecewise continuous functions defined on
[
0
,
∞
)
[0,\infty)
[
0
,
∞
)
which satisfy the following condition:
f
(
x
)
f
(
y
)
≤
ϵ
∣
x
−
y
∣
(
x
,
y
≥
0
)
f(x)f(y)\leq \epsilon^{\mid x-y\mid} (x,y \geq 0)
f
(
x
)
f
(
y
)
≤
ϵ
∣
x
−
y
∣
(
x
,
y
≥
0
)
. Find the value of
s
ϵ
=
sup
f
∈
F
ϵ
∫
0
∞
f
(
x
)
d
x
s_{\epsilon}= \sup_{f\in F_{\epsilon}} \int_{0}^{\infty} f(x) dx
s
ϵ
=
sup
f
∈
F
ϵ
∫
0
∞
f
(
x
)
d
x
(R. 5)
college contests